Journal of Organometallic Chemistry, 192 (1980) 353–358 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DIE MOLEKÜL- UND KRISTALLSTRUKTUR VON TRIMETHYLZINNAZID Me₃SnN₃

RUDOLF ALLMANN, RÜDIGER HOHLFELD, ALICJA WASKOWSKA * und JÖRG LORBERTH *

Fachbereiche Geowissenschaften und Chemie der Philipps-Universität, Hans-Meerwein-Allee, Lahnberge, D-3550 Marburg/Lahn (B.R.D.)

(Eingegangen den 26. November 1979)

Summary

The electrophilic cleavage reaction of $(Me_3Sn)_2CN_2$ with Me_3SiN_3 in diluted ethereal solution affords well-formed crystals of Me_3SnN_3 in excellent yield; the azide was investigated by single crystal X-ray methods. Me_3SnN_3 crystallizes in the pseudohexagonal space group $P2/b2/n2_1/n$ with Z = 4, $d_c = 1.960$ g cm⁻³; a = 1172.5(6); b = 679.5(4); c = 875.5(5) pm; V = 697.52 Å³.

A total of 480 unique non-zero reflections was obtained at room temperature; refining the structure with anisotropic temperature factors for all nonhydrogen atoms and with isotropic temperature factors for the hydrogen atoms resulted in a conventional *R*-value of 0.024. Exactly planar Me₃Sn-groups are linked in zig-zag-chains by linear N₃-groups while the tin atoms adopt almost ideal symmetric trigonal bipyramidal coordination; the methyl groups of the Me₃Sn moieties are arranged in a staggered conformation along the *c*-axes.

Zusammenfassung

Elektrophile Spaltung von $(Me_3Sn)_2CN_2$ mit Me_3SiN_3 in etherischer Lösung führt zu gutausgebildeten Kristallen von Me_3SnN_3 in ausgezeichneten Ausbeuten; das Azid wurde mit Einkristall-Rontgenbeugungsmethoden untersucht.

 Me_3SnN_3 kristallisiert in der pseudohexagonalen Raumgruppe $P2/b2/n2_1/n$ mit Z = 4; $d_c = 1.960$ g cm⁻³; a = 1172.5(6); b = 679.5(4); c = 875.5(5) pm; V = 697.52 Å³.

Insgesamt wurden 480 unabhängige Reflexe mit $I > \sigma(I)$ bei Raumtemperatur gemessen; eine Verfeinerung der Struktur mit anisotropen Temperaturfaktoren für alle schwereren Atome und mit isotropen Temperaturfaktoren für die

^{*} Ständige Adresse: Institute for Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wroclaw, PO Box 937, Poland.

Wasserstoffatome führt zu einem konventionellen R-Wert von 0.024. Planare Me₃Sn-Gruppen werden in einer Zick-Zack-Kette durch lineare N₃-Gruppen verknüpft, wobei die Zinnatome fast ideal trigonal-bipyramidale Koordination aufweisen; entlang der c-Achse sind die Methylgruppen der Me₃Sn-Einheiten in einer gestaffelten Konformation angeordnet.

Einführung

Aus einer elektrophilen Spaltungsreaktion von Bis(trimethylstannyl)diazomethan mit Trimethylsilylazid erhielten wir kürzlich neben dem gewünschten Heterometalldiazoalkan $Me_3Sn(Me_3Si)CN_2$ als Reaktionsprodukt kristallines Trimethylzinnazid [1]:

 $(\mathrm{Me_{3}Sn})_{2}\mathrm{CN_{2}} + \mathrm{Me_{3}SiN_{3}} \xrightarrow{\mathrm{Et_{2}O}/-T} \mathrm{Me_{3}Sn}(\mathrm{Me_{3}Si})\mathrm{CN_{2}} + \mathrm{Me_{3}SnN_{3}} \downarrow$

 Me_3SnN_3 liegt sowohl nach Aussagen der Schwingungsspektroskopie [2] als auch der ¹¹⁹Sn-Mössbauerspektroskopie [3] als Koordinationspolymers mit fünffach koordinierten Zinnatomen vor; ¹⁵N-NMR-Messungen bestätigen einen raschen Austausch von Azidgruppen in Lösungen des Azids [4], wodurch nur zwei Resonanzsignale sichtbar werden.

Von den bislang diskutierten und vielzitierten Strukturen fünffachkoordinierter Zinnverbindungen [5] liegen für Me₃SnF [6,7] und Me₃SnOH [8] keine genauen Beschreibungen sondern lediglich Strukturvorschläge vor; in Me₃SnCN [9] und Me₃SnOCH₃ [10] sind ideal trigonal-bipyramidal konfigurierte Zinnatome innerhalb der Kettenpolymeren nachgewiesen. Nachfolgend wird die Einkristall-Röntgenstrukturuntersuchung an Me₃SnN₃ beschrieben, die sich im Prinzip eng an die Ergebnisse für Me₃SnCN und Me₃SnOCH₃ anschliesst.

Experimentelles

Ein farbloser, in Richtung der c-Achse gestreifter Kristall von ungefähr 0.3 mm ϕ und 0.5 mm Länge wurde in eine Quarzglaskapillare eingeschlossen und auf einem Philips-Vierkreisdiffraktometer PW 1100 vermessen (Mo- K_{α} -Strahlung, Graphit-Monochromator, $\omega/2\theta$ Messmethode, Messzeit pro Reflex = 40" bei 1.2° Messbreite in ω).

Dabei ergab sich eine pseudohexagonale Unterzelle von a' = b' = 677.6; c' = 437.8 pm; $a' = \beta' = 90^{\circ}$, $\gamma' = 119.81^{\circ}$, $V' = 174.4 \text{ Å}^3 \text{ mit } Z = 1$ Formeleinheit (CH₃)₃SnN₃ pro Zelle. Zunächst wurden die Reflexe dieser Unterzelle bis $\theta = 30^{\circ}$ gemessen (insgesamt 327 unabhängige Reflexe, gemittelt aus meist 4 Einzelmessungen). Alle Reflexe dieser Unterzelle sind stark und speigeln die Anordnung der Sn-Atome wieder. Dann wurde festgestellt, dass zwischen diesen starken Reflexen sowohl in *c*- als auch in *a*-Richtung (bei orthorhombischer Aufstellung) noch schwache Reflexe lagen, so dass das Volumen der echten Zelle viermal so gross ist wie das der Unterzelle: a = 1172.5(6); b = 679.5(4); c = 875.5(5) pm, V = 697.52 Å³, Z = 4, $d_c = 1.960$ g cm⁻³. Diese schwachen Reflexe, davon 131 unbeobachtete mit $I \leq 1\sigma(I)$). Da nur 4 Formeleinheiten in der Zelle

æ

vorkommen, müssen sowohl die $(CH_3)_3Sn$ als auch die N_3 -Gruppierung spezielle Lagen einnehmen. Da die erste Gruppierung nicht und die zweite wahrscheinlich nicht zentrosymmetrisch ist, kommen nur die windschief zueinander liegenden 2-zähligen Achsen in *a*- und *b*-Richtung in Frage. Wegen der deutlich ausgeprägten Unterzelle muss Sn dabei die Lage $\frac{1}{4}$ y $\frac{1}{4}$ mit $y \approx \frac{1}{4}$ einnehmen, für die N_3 -Gruppe ergibt sich damit die Lage x_4^10 . In Analogie zu ähnlichen Verbindungen, z.B. (CH₃)₃SnOCH₃, mit *a* = 661; *b* = 810; *c* = 1261 pm; *V* = 675 Å³; *Z* = 4, aber Raumgruppe $P2_12_12_1$; [10], wurde ein Startparametersatz (ohne H-Atome) konstruiert, der sich mit isotropen Temperaturfaktoren auf *R* = 0.051 verfeinern liess; dabei wurden die Atomformfaktoren der neutralen Atome aus den "International Tables, Vol. IV", sowie Einheitsgewichte für die einzelnen Reflexe benutzt.

Mit anisotropen Temperaturfaktoren liess sich dieser Vorschlag weiter auf R = 0.031 verfeinern; eine anschliessende Differenzen-Fouriersynthese ergab die Lagen der H-Atome, wobei die zu C(1) gehörenden Atome H(11), H(12), H(13) einen weitgehend verschmierten Ring in y = -0.115 um die 2-zählige Achse in $\frac{1}{4} y \frac{1}{4}$ ergaben. Dies entspricht der Tatsache, dass eine CH₃-Gruppe nur mit einer statistischen Verteilung der H-Atome auf einer 2-zähligen Achse angeordnet werden kann (d.h. 6 H-Atome mit 50% Besetzungswahrscheinlichkeit bzw. freie Rotation der CH₃-Gruppe um die Sn-C-Achse). Unter Einschluss aller H-Atome mit isotropen Temperaturfaktoren sank der Zuverlässigkeits-

		J		ويساديها والأروا فالمرابعة ويستحد مروور وروا فيراغب			
Atom	×	y		z	z B		
Sn	$\frac{1}{4}$	0,25602(9)		14	(2.57)	
C(1)	$\frac{1}{4}$	-0.0577(11)		$\frac{1}{4}$	0	5.22)	•
C(2)	0.1072(6)	0.4201(10)		0.1659((7) (8	8.65)	
N(1)	0.3310(5)	$\frac{1}{4}$		0	G	3.04)	
N(2)	0.4349(6)	$\frac{1}{4}$		0	G	3.19)	
N(3)	0.5325(6)	1		0	(5.10)	
$\frac{1}{2}$ H(11)	0.180(9)	-0.115(17)		0.190(1	3) :	9(5)	
1 5H(12)	0.315(8)	-0.115(14)		0.195(1	2)	9(5)	
1 7H(13)	0.255(10)	-0.115(19)		0.365(1	365(15) 9(5)		
H(21)	0.050(8)	0.334(14)		0.119(1	0.119(11) 8(3)		
H(22)	0.061(8)	0.509(15)		0.247(1	0.247(12) 8(3)		
H(23)	0.138(7)	0.498(14)		0.091(1	0.091(10) 8(3)		
Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃	ō(B)
Sn	2.51	2.88	2.32	0	0,20	0	0.015 Å ²
C(1)	5.06	2.24	8.36	0	2.42	0	0.47
C(2)	3.59	4.59	2.77	1.37	-0.40	0.25	0.28
N(1)	2.80	4.26	2.06	0	0	0.01	0.25
N(2)	3.41	3.90	2.25	0	0	0.55	0.27
N(3)	2.94	7.16	5.20	0	0	0.24	0.39
N(2) N(3)	3.41 2.94	3.90 7.16	2.25 5.20	0 0	0 0	0.55 0.24	0.2 0.3

TABELLE 1

ATOMPARAMETER Me₃SnN₃

Abstände		Winkel			
SnC(1)	213.2(8)	C(1)—Sn—C(2)	121.4(2) (2x)		
Sn-C(2)	214.2(7) (2x)	C(2)—Sn—C(2')	117.3(3)		
Sn-N(1)	238.6(3) (2x)	C(1)-Sn-N(1)	89.0(0) (2x)		
N(1)-N(2)	121.8(9)	C(2)-Sn-N(1)	90.3(2) (2x)		
N(2)N(3)	114.5(10)	C(2)-Sn-N(1')	90.7(2) (2x)		
С—Н	92-108(11)	N(1)-Sn-N(1')	178.0(3)		
C(1)…C(2)	373(1) (2x)	Sn-N(1)-N(2)	113.5(1) (2x)		
C(2)…C(2')	366(1)	SnN(1)Sn'	133.1(3)		
N(1)C(1)	317(1)	N(1)-N(2)-N(3)	180(0)		
N(1)…C(2)	321(1)	H-C-H und Sn-C-H	102, 117(2)		
N(1)····C(2')	323(1)				
$N(2) \cdots N(3; 1 - x_1 1 - y, z)$	341.9(2)				
$C(2) \cdots C(2; x, \frac{1}{2} - y, \overline{z})$	371(1)				

		-	
BINDUNGSABSTÄNDE (pm)	UND BINDUNGSWINKEL (°) IN	Me ₃ SnN ₃

index schliesslich auf R = 0.024 für die 480 beobachteten Reflexe. Von den 131 unbeobachteten Reflexen wurden nur 6 grösser als $\sigma(F) = F_{\min}$ berechnet, aber alle $\leq 1.2\sigma(F)$. Im letzten Verfeinerungs-Zyklus wurden die H-Atome auf sinnvollen Lagen festgehalten (ohne dass sich dabei der R-Wert erhöhte). Die endgültigen Strukturparameter sind in Tabelle 1 aufgeführt *.

Strukturbeschreibung

In c-Richtung erstrecken sich längs der 2₁-Achsen Ketten …(CH₃)₃Sn…N₃… $(CH_3)_3Sn\cdots N_3\cdots$ in denen das Sn-Koordinationspolyeder fast eine ideale trigonale Bipyramide ergibt (mit $(Sn-C) = 213.9 \text{ pm} (3\times) \text{ und } Sn-N(1) = 238.6$ pm (2 \times). Aus Symmetriegründen ist die (CH₃)₃Sn-Gruppe exakt eben, die Winkel (C-Sn-C) weichen nur wenig von 120° ab (siehe Tab. 2). Da $\gamma(Sn)$ nicht genau $\frac{1}{4}$ beträgt, ist die Gruppe (N-Sn-N) leicht gewinkelt (178.0°), die Winkel (N-Sn-C) liegen zwischen 89.0 und 90.7°.

Die Azidgruppen liegen auf zweizähligen Achsen und sind daher exakt linear mit N(1)-N(2) = 121.6 pm und N(2)-N(3) = 114.7 pm; diese Abstände sind stärker ausgeglichen als die in anderen Aziden mit 125 und 112 pm [11] und deuten ebenso wie die langen Sn-N(1)-Abstände auf relativ schwache Sn-N-Bindungen hin. Der Winkel (Sn-N(1)-Sn) beträgt 133.1°; entsprechend $Sn-N(1)-N(2) = 113.5^{\circ}$. Der N-N-Abstand zu den nächsten Azid-Gruppen beträgt 342 ppm. (Fig. 1 und 2).

Die in c-Richtung um 438 pm = c/2 voneinander entfernten (CH₃)₃Sn-Gruppen liegen in Staffelform zueinander und sind um 23.8° um die b-Achse aus der ab-Ebene herausgedreht: die kürzesten C…C-Abstände in einer Zick-Zack-Kette betragen 372 pm. Damit stimmen die gefundenen Atom-abstande und -winkel weitgehend mit denen in anderen Trimethylzinnverbindungen Me₃SnX überein (vergleiche Tabelle 3).

TABELLE 2

^{*} Die F_0/F_c -Listen können bei den Autoren angefordert werden.

Fig. 1. Koordinationspolyeder um ein Zinnatom in Me₃SnN₃ (Abstände in pm, Winkel in Grad).

Fig. 2. Darstellung der Packung von Zick-Zack-Ketten in Me₃SnN₃ (ohne H-Atome, mit einigen zwischenmolekularen Abständen in pm).

x	Sn-C	4C-Sn-C	SnX	4X—Sn→X	¥Sn→X—Sn	4C—Sn—X	Lit.
NNN	213.9	120	238.6(2x)	178.0	133.1	89.0-90.7	diese Arbei
$\frac{1}{2}NCO$	213	119	243 275 [}] N	177	135 N	81-88	12
$\frac{1}{2}OH$			²¹⁴ 215 [}] он	177	138 OH	92—99	
			220				
осн3	214	120	226	172.4	131.2	88.1—94.7 87.4—92.9	10
$\frac{1}{3}$ CrO ₄	214	119	222(2x) 250(2x) 0	176			13
<u>1</u> 30н			215(2x) OH	176	136 (OH)	81—98	
		_	243.4			99.5	
Cl	214	117.2	325.9	176.8	150.9	80.5	14
CN	216	120	249(2x)	180	_	90	9
			215 N			9296 N	
NCS	213	119	313 S	178	—	84—88 S	15
N(CN)2	213.0	120	233.5(2x)	177.8	-	88.7-91.2	16

TABELLE 3

VERGLEICH VON ATOMABSTANDEN (in pm) UND BINDUNGSWINKELN (in	°) IN POLYMEREN
(CH ₃) ₃ SnX-KRISTALLEN (AN Sn GEBUNDENE ATOME KURSIVIERT)	

Dank

Die Untersuchungen wurden durch die Deutsche Forschungsgemeinschaft (SFB 127) und den VCI, Fonds der Chemischen Industrie e.V., gefördert; wir danken beiden Institutionen für grosszügige Forschungsbeihilfen.

Literatur

- 1 E. Glozbach und J. Lorberth, J. Organometal. Chem., 191 (1980) 371.
- 2 J.S. Thayer und R. West, Inorg. Chem., 3 (1964) 889.
- 3 G.M. Bancroft, V.G. Kumar Das, T.K. Sham und M.G. Clark, J. Chem. Soc. Dalton Trans., (1976) 643.
- 4 J. Müller, Z. Naturforsch. B., 34 (1979) 536.
- 5 J.A. Zubieta und J.J. Zuckerman, Prog. Inorg. Chem., 24 (1978) 251.
- 6 H.C. Clark, R.J. O'Brien und J. Trotter, Proc. Chem. Soc., (1964) 85; J. Chem. Soc., (1964) 2332.
- 7 K. Yasuda, Y. Kawasaki, N. Kasai und T. Tanaka, Bull. Chem. Soc. Jap., 38 (1965) 1216.
- 8 N. Kasai, K. Yasuda und R. Okawara, J. Organometal. Chem., 3 (1965) 172.
- 9 E.O. Schlemper und D. Britton, Inorg. Chem., 5 (1966) 507.
- 10 A.M. Domingos und G.M. Sheldrick, Acta Cryst., B, 30 (1974) 519.
- 11 U. Müller, Struct. Bonding, 14 (1973) 141.
- 12 J.B. Hall und D. Britton, Acta Cryst., B, 28 (1972) 2133.
- 13 A.M. Domingos und G.M. Sheldrick, J. Chem. Soc. Dalton Trans., (1974) 477.
- 14 M. Bilayet Hossain, J.L. Lefferts, K.C. Molloy, D. van der Helm und J.J. Zuckerman, Inorg. Chim. Acta, 36 (1979) L409.
- 15 R.A. Forder und G.M. Sheldrick, J. Organometal. Chem., 21 (1970) 115.
- 16 Y.M. Chow, Inorg. Chem., 10 (1971) 1938.